In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution

نویسندگان

  • Jiong Wang
  • Liyong Gan
  • Wenyu Zhang
  • Yuecheng Peng
  • Hong Yu
  • Qingyu Yan
  • Xinghua Xia
  • Xin Wang
چکیده

Molecularly well-defined Ni sites at heterogeneous interfaces were derived from the incorporation of Ni2+ ions into heteroatom-doped graphene. The molecular Ni sites on graphene were redox-active. However, they showed poor activity toward oxygen evolution reaction (OER) in KOH aqueous solution. We demonstrated for the first time that the presence of Fe3+ ions in the solution could bond at the vicinity of the Ni sites with a distance of 2.7 Å, generating molecularly sized and heterogeneous Ni-Fe sites anchored on doped graphene. These Ni-Fe sites exhibited markedly improved OER activity. The Pourbaix diagram confirmed the formation of the Ni-Fe sites and revealed that the Ni-Fe sites adsorbed HO- ions with a bridge geometry, which facilitated the OER electrocatalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film

In situ electropolymerization as a facile synthetic procedure has been used to obtain highly active compositesof ionic liquid functionalized graphene oxide(FGO)and poly ortho aminophenol (POAP). Surface and electrochemical analysis have been used for characterisation of FGO-POAP composite film. Nickel was accumulated by complex formation between Ni (II) in solution and amines sites in the polym...

متن کامل

Electrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film

In situ electropolymerization as a facile synthetic procedure has been used to obtain highly active compositesof ionic liquid functionalized graphene oxide(FGO)and poly ortho aminophenol (POAP). Surface and electrochemical analysis have been used for characterisation of FGO-POAP composite film. Nickel was accumulated by complex formation between Ni (II) in solution and amines sites in the polym...

متن کامل

Highly Active Fe Sites in Ultrathin Pyrrhotite Fe7S8 Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution

Identification of active sites in an electrocatalyst is essential for understanding of the mechanism of electrocatalytic water splitting. To be one of the most active oxygen evolution reaction catalysts in alkaline media, Ni-Fe based compounds have attracted tremendous attention, while the role of Ni and Fe sites played has still come under debate. Herein, by taking the pyrrhotite Fe7S8 nanoshe...

متن کامل

Nitrogen-doped Graphene Interpenetrated 3-D Ni- Nanocage: Efficient and Stable Water-to- Dioxygen Electrocatalyst

Herein, we report synthesis of nitrogen-doped graphene (NGr) interpenetrated 3-D Ninanocage (Ni-NGr) electrocatalyst by simple water-in-oil (w/o) emulsion technique for oxidation of water-to-dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as concomitant interaction of N, C, with Ni at a nano-regime have be...

متن کامل

Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction.

Oxygen reduction reaction (ORR) is an important reaction in energy conversion systems such as fuel cells and metal-air batteries. Carbon nanomaterials doped with heteroatoms are highly attractive materials for use as electrocatalysts by virtue of their excellent electrocatalytic activity, high conductivity, and large surface area. This study reports the synthesis of highly efficient electrocata...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2018